Charakterformeln Für Kipp-moduln Über Kac-moody-algebren
نویسندگان
چکیده
We show how to express the characters of tilting modules in a (possibly parabolic) category O over a Kac-Moody algebra in terms of the characters of simple highest weight modules. This settles in lots of cases Conjecture 7.2 in Kazhdan-Lusztig-Polynome und eine Kombinatorik für KippModuln, Represent. Theory (1997), by the author, describing the character of tilting modules for quantum groups at roots of unity.
منابع مشابه
Character Formulas for Tilting Modules over Kac-moody Algebras
We show how to express the characters of tilting modules in a (possibly parabolic) category O over a Kac-Moody algebra in terms of the characters of simple highest weight modules. This settles, in lots of cases, Conjecture 7.2 of Kazhdan-Lusztig-Polynome and eine Kombinatorik für Kipp-Moduln, Representation Theory (An electronic Journal of the AMS) (1997), by the author, describing the characte...
متن کاملThe two parameter quantum groups $U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra and their equitable presentation
We construct a family of two parameter quantum grou-\ps $U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody algebra corresponding to symmetrizable admissible Borcherds Cartan matrix. We also construct the $textbf{A}$-form $U_{textbf{A}}$ and the classical limit of $U_{r,s}(mathfrak{g})$. Furthermore, we display the equitable presentation for a subalgebra $U_{r...
متن کاملA Theory of Lorentzian Kac–moody Algebras
We present a variant of the Theory of Lorentzian (i. e. with a hyperbolic generalized Cartan matrix) Kac–Moody algebras recently developed by V. A. Gritsenko and the author. It is closely related with and strongly uses results of R. Borcherds. This theory should generalize well-known Theories of finite Kac–Moody algebras (i. e. classical semi-simple Lie algebras corresponding to positive genera...
متن کاملOn Classification of Lorentzian Kac–moody Algebras
We discuss a general theory of Lorentzian Kac–Moody algebras which should be a hyperbolic analogy of the classical theories of finite-dimensional semisimple and affine Kac–Moody algebras. First examples of Lorentzian Kac–Moody algebras were found by Borcherds. We consider general finiteness results about the set of Lorentzian Kac–Moody algebras and the problem of their classification. As an exa...
متن کاملSome Properties of Fuzzy Sets on Finite Type of Kac-Moody Algebra G2
The Kac-Moody algebras has been attracting the attention of a lot of Mathematicians because of its various connections and applications to different branches of Mathematics and Mathematical Physics since the introduction of the subject in 1968, developed simultaneously and independently by Kac and Moody. On the other hand, Fuzzy sets first originated in a seminar paper by Lotfi A.Zadeh in 1965....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997